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PROBLEM 1 NAME:

(1) Let v1 and v2 be linearly independent vectors in Rn. What is the rank of the matrix:

A =
[
v1|v2

]
whose columns are the given vectors? (5 pts)
Solution: Note that the column space is spanned by v1 and v2, but since these are linearly
independent as stated in the question, this gives a basis of the column space. So rank(A) =
dim(C(A)) = 2 as it has a basis of 2 vectors.

(2) For any vector b ∈ Rn, its projection onto the subspace V spanned by v1 and v2 is:

projV b = PV b where the projection matrix is PV = A(ATA)−1AT

Use this to obtain a formula (in terms of A and b) for the real numbers α and β defined by
the property that αv1 +βv2 is the closest vector in the subspace V to the vector b. (10 pts)

Solution: Denote by

[
α
β

]
= (ATA)−1Ab. With this definition we have

projV b = A

[
α
β

]
= αv1 + βv2

by using the definition of PV given above. Thus the above given formula for α and β as
required from the problem.

(3) Explain why, for any given vector b, the numbers α and β in (2) are unique. (5 pts)
Solution: Assume we have also a solution α′ and β′ still describing the projection vector as
a linear combination of v1 and v2, ie we have

αv1 + βv2 = α′v1 + β′v2

and so we can rewrite this equation as

(α− α′)v1 + (β − β′)v2 = 0

But this gives a 0 linear combination of linearly independent vectors, so by definition of
linearly independence, the coefficients of this linear combination are all 0 or in other words

α = α′

β = β′

Thus we see the coefficients α, β are unique.



(4) Let v1, v2, A still be as on the previous page, and consider the vectors w1 = 3v1 − 2v2

and w2 = 2v1 − v2. We consider the matrix whose columns are these new vectors:

B =
[
w1|w2

]
Decide whether B = AX or B = XA for some matrix X. What is X? Explain. (5 pts)
Solution: We can write

B = AX = A

[
3 2
−2 −1

]
This is because AX changes A by taking linear combinations of columns, while XA changes
it by taking linear combination of rows and by definition B is constructed from A by taking
linear combinations of the columns.

(5) The projection matrix onto the subspace W spanned by w1 and w2 is:

PW = B(BTB)−1BT

Prove that PW = PV , either by a geometric argument, or by a computation. (10 pts)

Solution:

• geometric: Note that w1 and w2 span the same vector space as v1 and v2, since
v1 = −w1 + 2w2 and v2 = −2w1 + 3w2. Thus W = V and so the matrices PV and
PW are the orthogonl projection matrices to the same subspace and hence they are
exactly the same matrix as required.

• algebraic:

PW = B(BTB)−1BT = AX(XTATAX)−1XTA =

AXX−1(ATA)−1(XT )−1XTAT = A(ATA)−1AT = PV

PROBLEM 2 (1) Use Gram-Schmidt to obtain a factorization (show all your steps):

A = QR of the matrix A =

1 6
4 15
8 12


where Q has orthonormal columns and R is an upper triangular square matrix. (15 pts)
Solution: Using Gram-Schmidt we first rescale the first column to get

q1 = v1/‖v1‖ =
1

9

1
4
8





Then we compute an orthogonal vector in the span of the two to get

q′2 = v2 − (v2 · q1)q1 = v2 − 18q1 =

 4
7
−4


and normalizing we get

q2 =
1

9

 4
7
−4


Thus we can write the factorization as

A = QX =
1

9

1 4
4 7
8 −4

[9 18
0 9

]

(2) With the notation as on the previous page, consider the linear transformation:

f : R2 → R3, f(v) = Qv

Suppose you have any two orthogonal (i.e. perpendicular) vectors v1,v2 ∈ R2. Prove that
the vectors f(v1), f(v2) ∈ R3 are also orthogonal (justify all your steps). (10 pts)
Solution: By assumption we know v1 · v2 = vT

1 v2 = 0. Also as the columns of Q are
orthonormal we know that QTQ = I2 the identity matrix, thus we get

f(v1) · f(v2) = f(v1)
Tf(v2) = (Qv1)

T (Qv2) = vT
1Q

TQv2 = vT
1 v2 = 0

Thus f(v1) and f(v2) are orthogonal

(3) Compute an eigenvector a of the matrix R and the corresponding eigenvalue (Hint: it’s
easy to spot the eigenvector just by looking at the matrix R). Draw the linear transformation:

g : R2 → R2, g(w) = Rw

on a picture of R2, by drawing the eigenvector a and showing where the function g sends a
and any other vector in R2 of your choice, linearly independent from a. (10 pts)

Solution: Note that R is upper triangular so e1 =

[
1
0

]
is always an eigenvector. In particular

note in this case that Re1 = 9e1.
To describe the transformation it is given by stretching the vector e1 by 9 and a vector not
in the direction of e1 is stretched by 9 and then translated in the direction of e1



PROBLEM 3
(1) Assume a, d, f are non-zero numbers and b, c, e are arbitrary. Compute all 9 cofactors of:

A =

a b c
0 d e
0 0 f


and use them to obtain a formula for the inverse matrix A−1. You may use the well-known

formula for 2× 2 determinants det

[
x y
z t

]
= xt− yz. (10 pts)

Solution: Putting the cofactors in the corresponding matrix entry, using the 2x2 determi-
nant we compute  df 0 0

bf af 0
be− cd ac ad


Now to compute A−1 we need to add signs take the transpose and divide by the determinant.
The only thing hence missing to compute is the determinant of A. But as A is upper
triangular det(A) = adf the product of the diagonal entries, hence

A−1 =
1

adf

df −bf be− cd
0 af −ae
0 0 ad



(2) Explain why all 5! = 120 terms in the big formula for the determinant:


0 0 0 a14 a15
0 0 0 a24 a25
0 0 0 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55


are zero. (10 pts)
Solution: Note that each term uses exactly 1 entry in each row and each column. So it has
to use 3 entries in the first 3 columns. But note that if you have any entry in the first 3
rows of the first 3 columns you get 0. So we of the first 3 columns we need to use all entries
in the last 2 rows. But you can’t pick 3 entries of the last 2 rows, such that they are all in
diferent rows.



(3) Use row operations to compute the determinant of the matrix:1 α α2

1 β β2

1 γ γ2


(if instead of row operations, you use the formula for 3× 3 determinants as a sum of 6 terms
to compute the above, you will lose at least half of the points). (10 pts)
Solution: We apply Gaussian elimination to get1 α α2

1 β β2

1 γ γ2

 
1 α α2

0 β − α (β − α)(β + α)
0 γ − α (γ − α)(γ + α)


If β 6= α we can divide the second row by β − α and multiply by γ − α and take this away
from the last row to get 1 α α2

0 β − α (β − α)(β + α)
0 0 (γ − α)(γ − β)


So as this is upper triangular we can compute the determinant by taking the product of the
diagonal entries to get det(A) = (β − α)(γ − α)(γ − β)
If β = α we have after the second step the second row is 0, so the determinant is 0 =
(β −α)(γ −α)(γ − β), thus in every case the determinant is given by (β −α)(γ −α)(γ − β)


